A Neural-Network-Based Selective Configuration Interaction Approach to Molecular Electronic Structure

Louis Thirion^{1,2}, Pavlo Bilous³, Yorick L. A. Schmerwitz^{2,4}, Max Kroesbergen¹, Gianluca Levi², Elvar Ö. Jónsson², Hannes Jónsson², Philipp Hansmann^{1,2}

 1 Friedrich-Alexander University of Erlangen-Nürnberg — 2 University of Iceland, Reykjavik — 3 Max Planck Institute for the Science of Light, Erlangen — 4 Max Planck Institute for Coal Research, Mühlheim

A novel method is presented for efficient *ab initio* calculations of molecules' ground and excited electronic states. Combining Hartree-Fock with a neural-network-based configuration interaction (NNCI) algorithm enables selective configuration interaction calculations that mitigate the exponential growth of the Hilbert space. Using our recently developed Python library SOLAX [1], a neural network classifier iteratively selects basis elements relevant for the targeted states, optimizing the many-body basis. Applied to the N₂ molecule, NNCI reproduces full configuration interaction (FCI) results obtained on nearly 10¹⁰ Slater determinants by using only 4×10^5 [2]. We find that rather than being hindered by combinatorial growth, NNCI benefits from increasing the number of single-particle degrees of freedom, providing a scalable alternative to standard truncation schemes. Future directions are committed to extending this approach to a multi-tier embedding scheme, thereby trying to enhance the accuracy of electronic structure calculations for surface reactions in the context of heterogeneous catalysis.

- Louis Thirion, Philipp Hansmann, and Pavlo Bilous, "SOLAX: A Python solver for fermionic quantum systems with neural network support," *SciPost Phys. Codebases* (2025)
- [2] Yorick L. A. Schmerwitz, Louis Thirion, Gianluca Levi, Elvar Ö. Jónsson, Pavlo Bilous, Hannes Jónsson, and Philipp Hansmann, "A Neural-Network-Based Selective Configuration Interaction Approach to Molecular Electronic Structure," *Jour*nal of Chemical Theory and Computation (2025)